Kubernetes-深入理解 StatefulSet
背景
无状态应用
一个应用的所有 Pod,是完全一样的。它们互相之间没有顺序,也无所谓运行在哪台宿主机上。需要的时候,Deployment 就可以通过 Pod 模板创建新的 Pod;不需要的时候,Deployment 就可以“杀掉”任意一个 Pod。这种情况就被称为 “无状态应用”(Stateless Application)
有状态应用
在分布式应用中,它的多个实例之间,往往有依赖关系,比如:主从关系、主备关系。
还有就是数据存储类应用,它的多个实例,往往都会在本地磁盘上保存一份数据。而这些实例一旦被杀掉,即便重建出来,实例与数据之间的对应关系也已经丢失,从而导致应用失败。
这种实例之间有不对等关系,以及实例对外部数据有依赖关系的应用,就被称为“有状态应用”(Stateful Application)。
编排工具StatefulSet简介
容器技术诞生后,大家很快发现,它用来封装“无状态应用”(Stateless Application),尤其是 Web 服务,非常好用。但是,一旦你想要用容器运行“有状态应用”(Stateful Application),其困难程度就会直线上升。而且,这个问题解决起来,单纯依靠容器技术本身已经无能为力,这也就导致了很长一段时间内,“有状态应用”几乎成了容器技术圈子的“忌讳”,大家一听到这个词,就纷纷摇头。
得益于“控制器模式”的设计思想,Kubernetes 项目很早就在 Deployment 的基础上,扩展出了对“有状态应用”的初步支持。这个编排功能,就是:StatefulSet
。StatefulSet 其实可以认为是对 Deployment 的改良。
StatefulSet 的设计其实非常容易理解。它把真实世界里的应用状态,抽象为了两种情况:
拓扑状态。
应用的多个实例之间不是完全对等的关系。这些应用实例,必须按照某些顺序启动,比如应用的主节点 A 要先于从节点 B 启动。而如果你把 A 和 B 两个 Pod 删除掉,它们再次被创建出来时也必须严格按照这个顺序才行。并且,新创建出来的 Pod,必须和原来 Pod 的网络标识一样,这样原先的访问者才能使用同样的方法,访问到这个新 Pod。
存储状态。
应用的多个实例分别绑定了不同的存储数据。对于这些应用实例来说,Pod A 第一次读取到的数据,和隔了十分钟之后再次读取到的数据,应该是同一份,哪怕在此期间 Pod A 被重新创建过。这种情况最典型的例子,就是一个数据库应用的多个存储实例。
StatefulSet 的核心功能,就是通过某种方式记录这些状态,然后在 Pod 被重新创建时,能够为新 Pod 恢复这些状态。
Headless Service介绍
在开始掌握 StatefulSet 的工作原理之前,就必须先了解一个 Kubernetes 项目中非常实用的概念:Headless Service。
Service 是 Kubernetes 项目中用来将一组 Pod 暴露给外界访问的一种机制。比如,一个 Deployment 有 3 个 Pod,那么我就可以定义一个 Service。然后,用户只要能访问到这个 Service,它就能访问到某个具体的 Pod。
Service的访问方式
Virtual IP(虚拟 IP)
第一种方式,是以 Service 的 VIP(Virtual IP,即:虚拟 IP)方式。当访问 10.0.23.1 这个 Service 的 IP 地址时,10.0.23.1 其实就是一个 VIP,它会把请求转发到该 Service 所代理的某一个 Pod 上。
Service DNS
第二种方式,就是以 Service 的 DNS 方式。只要访问“my-svc.my-namespace.svc.cluster.local”这条 DNS 记录,就可以访问到名叫 my-svc 的 Service 所代理的某一个 Pod。
在 Service DNS 的方式下,具体还可以分为两种处理方法:
Normal Service
在这种情况下,你访问“my-svc.my-namespace.svc.cluster.local”解析到的,正是 my-svc 这个 Service 的 VIP,后面的流程就跟 VIP 方式一致了。
Headless Service
在这种情况下,你访问“my-svc.my-namespace.svc.cluster.local”解析到的,直接就是 my-svc 代理的某一个 Pod 的 IP 地址。可以看到,这里的区别在于,Headless Service 不需要分配一个 VIP,而是可以直接以 DNS 记录的方式解析出被代理 Pod 的 IP 地址。
Headless Service生成DNS记录
从 Headless Service 的定义方式来分析一下。
下面是一个标准的 Headless Service 对应的 YAML 文件:svc.yaml
1 | apiVersion: v1 |
可以看到,所谓的 Headless Service,其实仍是一个标准 Service 的 YAML 文件。只不过,它的 clusterIP 字段的值是:None,即:这个 Service,没有一个 VIP 作为“头”。这也就是 Headless 的含义。所以,这个 Service 被创建后并不会被分配一个 VIP,而是会以 DNS 记录的方式暴露出它所代理的 Pod。
而它所代理的 Pod,依然是采用 Label Selector 机制选择出来的,即:所有携带了 app=nginx 标签的 Pod,都会被这个 Service 代理起来。
当你按照这样的方式创建了一个 Headless Service 之后,它所代理的所有 Pod 的 IP 地址,都会被绑定一个这样格式的 DNS 记录,如下所示:
1 | <pod-name>.<svc-name>.<namespace>.svc.cluster.local |
这个 DNS 记录,正是 Kubernetes 项目为 Pod 分配的唯一的“可解析身份”(Resolvable Identity)。
有了这个“可解析身份”,只要你知道了一个 Pod 的名字,以及它对应的 Service 的名字,你就可以非常确定地通过这条 DNS 记录访问到 Pod 的 IP 地址。
StatefulSet维持 Pod 的拓扑状态
StatefulSet 是使用这个 DNS 记录来维持 Pod 的拓扑状态的,具体流程如下:
先来编写一个 StatefulSet 的 YAML 文件,如下所示:statefulset.yaml
1 | apiVersion: apps/v1 |
这个 YAML 文件,和之前用到的 nginx-deployment 的唯一区别,就是多了一个 serviceName=nginx 字段。
这个字段的作用,就是告诉 StatefulSet 控制器,在执行控制循环(Control Loop)的时候,请使用 nginx 这个 Headless Service 来保证 Pod 的“可解析身份”。
所以,当通过 kubectl create 创建了上面这个 Service 和 StatefulSet 之后,就会看到如下两个对象:
1 | $ kubectl create -f svc.yaml |
可以通过 kubectl 的 -w 参数,即:Watch 功能,实时查看 StatefulSet 创建两个有状态实例的过程:
备注:如果手不够快的话,Pod 很快就创建完了。不过,依然可以通过这个 StatefulSet 的 Events 看到这些信息。
1 | $ kubectl get pods -w -l app=nginx |
通过上面这个 Pod 的创建过程,可以看到,StatefulSet 给它所管理的所有 Pod 的名字,进行了编号,编号规则是:StatefulSet的名字
+—
+index
。
而且这些编号都是从 0 开始累加,与 StatefulSet 的每个 Pod 实例一一对应,绝不重复。
更重要的是,这些 Pod 的创建,也是严格按照编号顺序进行的。比如,在 web-0 进入到 Running 状态、并且细分状态(Conditions)成为 Ready 之前,web-1 会一直处于 Pending 状态。
备注:Ready 状态再一次提醒了我们,为 Pod 设置 livenessProbe 和 readinessProbe 的重要性。
当这两个 Pod 都进入了 Running 状态之后,就可以查看到它们各自唯一的“网络身份”了。
使用 kubectl exec 命令进入到容器中查看它们的 hostname:
1 | $ kubectl exec web-0 -- sh -c 'hostname' |
可以看到,这两个 Pod 的 hostname 与 Pod 名字是一致的,都被分配了对应的编号。接下来,我们再试着以 DNS 的方式,访问一下这个 Headless Service:
1 | $ kubectl run -i --tty --image busybox:1.28.4 dns-test --restart=Never --rm /bin/sh |
通过这条命令,启动了一个一次性的 Pod,因为–rm 意味着 Pod 退出后就会被删除掉。然后,在这个 Pod 的容器里面,尝试用 nslookup 命令,解析一下 Pod 对应的 Headless Service:
1 | $ kubectl run -i --tty --image busybox:1.28.4 dns-test --restart=Never --rm /bin/sh |
从 nslookup 命令的输出结果中,我们可以看到,在访问 web-0.nginx 的时候,最后解析到的,正是 web-0 这个 Pod 的 IP 地址;而当访问 web-1.nginx 的时候,解析到的则是 web-1 的 IP 地址。
这时候,如果在另外一个 Terminal 里把这两个“有状态应用”的 Pod 删掉:
1 | $ kubectl delete pod -l app=nginx |
然后,再在当前 Terminal 里 Watch 一下这两个 Pod 的状态变化,就会发现一个有趣的现象:
1 | $ kubectl get pod -w -l app=nginx |
可以看到,当我们把这两个 Pod 删除之后,Kubernetes 会按照原先编号的顺序,创建出了两个新的 Pod。并且,Kubernetes 依然为它们分配了与原来相同的“网络身份”:web-0.nginx 和 web-1.nginx。
通过这种严格的对应规则,StatefulSet 就保证了 Pod 网络标识的稳定性。
比如,如果 web-0 是一个需要先启动的主节点,web-1 是一个后启动的从节点,那么只要这个 StatefulSet 不被删除,你访问 web-0.nginx 时始终都会落在主节点上,访问 web-1.nginx 时,则始终都会落在从节点上,这个关系绝对不会发生任何变化。
所以,如果我们再用 nslookup 命令,查看一下这个新 Pod 对应的 Headless Service 的话:
1 | $ kubectl run -i --tty --image busybox dns-test --restart=Never --rm /bin/sh |
我们可以看到,在这个 StatefulSet 中,这两个新 Pod 的“网络标识”(比如:web-0.nginx 和 web-1.nginx),再次解析到了正确的 IP 地址(比如:web-0 Pod 的 IP 地址 10.244.1.8)。
通过这种方法,Kubernetes 就成功地将 Pod 的拓扑状态(比如:哪个节点先启动,哪个节点后启动),按照 Pod 的“名字 + 编号”的方式固定了下来。此外,Kubernetes 还为每一个 Pod 提供了一个固定并且唯一的访问入口,即:这个 Pod 对应的 DNS 记录。
这些状态,在 StatefulSet 的整个生命周期里都会保持不变,绝不会因为对应 Pod 的删除或者重新创建而失效。
不过,相信你也已经注意到了,尽管 web-0.nginx 这条记录本身不会变,但它解析到的 Pod 的 IP 地址,并不是固定的。这就意味着,对于“有状态应用”实例的访问,你必须使用 DNS 记录或者 hostname 的方式,而绝不应该直接访问这些 Pod 的 IP 地址。
StatefulSet维持 Pod 的存储状态
Kubernetes 项目引入了一组叫作 Persistent Volume Claim(PVC)和 Persistent Volume(PV)的 API 对象,大大降低了用户声明和使用持久化 Volume 的门槛。
要使用一个 Volume,只需要简单的两步即可:
- 定义一个 PVC
这个 PVC 对象里,不需要任何关于 Volume 细节的字段,只有描述性的属性和定义
1 | kind: PersistentVolumeClaim |
- 在应用的 Pod 中,声明使用这个 PVC:
1 | apiVersion: v1 |
只要创建这个 PVC 对象,Kubernetes 就会自动为它绑定一个符合条件的 PV(Persistent Volume)对象
常见的 PV 对象的 YAML 文件:
1 | kind: PersistentVolume |
Kubernetes 中 PVC 和 PV 的设计,实际上类似于“接口”和“实现”的思想。开发者只要知道并会使用“接口”,即:PVC;而运维人员则负责给“接口”绑定具体的实现,即:PV。
拓扑状态和存储状态联合使用
1 | apiVersion: apps/v1 |
为这个 StatefulSet 额外添加了一个 volumeClaimTemplates 字段。从名字就可以看出来,它跟 Deployment 里 Pod 模板(PodTemplate)的作用类似。也就是说,凡是被这个 StatefulSet 管理的 Pod,都会声明一个对应的 PVC;而这个 PVC 的定义,就来自于 volumeClaimTemplates 这个模板字段。更重要的是,这个 PVC 的名字,会被分配一个与这个 Pod 完全一致的编号。
这个自动创建的 PVC,与 PV 绑定成功后,就会进入 Bound 状态,这就意味着这个 Pod 可以挂载并使用这个 PV 了。
如果还是不太理解 PVC 的话,可以先记住这样一个结论:PVC 其实就是一种特殊的 Volume。只不过一个 PVC 具体是什么类型的 Volume,要在跟某个 PV 绑定之后才知道。
当然,PVC 与 PV 的绑定得以实现的前提是,运维人员已经在系统里创建好了符合条件的 PV(比如,我们在前面用到的 pv-volume);或者,你的 Kubernetes 集群运行在公有云上,这样 Kubernetes 就会通过 Dynamic Provisioning 的方式,自动为你创建与 PVC 匹配的 PV。
所以,在使用 kubectl create 创建了 StatefulSet 之后,就会看到 Kubernetes 集群里出现了两个 PVC:
1 | $ kubectl create -f statefulset.yaml |
可以看到,这些 PVC,都以“<PVC 名字 >-<StatefulSet 名字 >-< 编号 >
”的方式命名,并且处于 Bound 状态。
这个 StatefulSet 创建出来的所有 Pod,都会声明使用编号的 PVC。比如,在名叫 web-0 的 Pod 的 volumes 字段,它会声明使用名叫 www-web-0 的 PVC,从而挂载到这个 PVC 所绑定的 PV。
所以,就可以使用如下所示的指令,在 Pod 的 Volume 目录里写入一个文件,来验证一下上述 Volume 的分配情况:
1 | $ for i in 0 1; do kubectl exec web-$i -- sh -c 'echo hello $(hostname) > /usr/share/nginx/html/index.html'; done |
如上所示,通过 kubectl exec 指令,在每个 Pod 的 Volume 目录里,写入了一个 index.html 文件。这个文件的内容,正是 Pod 的 hostname。比如,在 web-0 的 index.html 里写入的内容就是”hello web-0”。
此时,如果你在这个 Pod 容器里访问“http://localhost”,你实际访问到的就是 Pod 里 Nginx 服务器进程,而它会为你返回 /usr/share/nginx/html/index.html 里的内容。这个操作的执行方法如下所示:
1 | $ for i in 0 1; do kubectl exec -it web-$i -- curl localhost; done |
如果你使用 kubectl delete 命令删除这两个 Pod,这些 Volume 里的文件也不会丢失。也就是说,原先与名叫 web-0 的 Pod 绑定的 PV,在这个 Pod 被重新创建之后,依然同新的名叫 web-0 的 Pod 绑定在了一起。对于 Pod web-1 来说,也是完全一样的情况。
保持存储状态的原理:
首先,当你把一个 Pod,比如 web-0,删除之后,这个 Pod 对应的 PVC 和 PV,并不会被删除,而这个 Volume 里已经写入的数据,也依然会保存在远程存储服务里(比如,我们在这个例子里用到的 Ceph 服务器)。
此时,StatefulSet 控制器发现,一个名叫 web-0 的 Pod 消失了。所以,控制器就会重新创建一个新的、名字还是叫作 web-0 的 Pod 来,“纠正”这个不一致的情况。
需要注意的是,在这个新的 Pod 对象的定义里,它声明使用的 PVC 的名字,还是叫作:www-web-0。这个 PVC 的定义,还是来自于 PVC 模板(volumeClaimTemplates),这是 StatefulSet 创建 Pod 的标准流程。
所以,在这个新的 web-0 Pod 被创建出来之后,Kubernetes 为它查找名叫 www-web-0 的 PVC 时,就会直接找到旧 Pod 遗留下来的同名的 PVC,进而找到跟这个 PVC 绑定在一起的 PV。
这样,新的 Pod 就可以挂载到旧 Pod 对应的那个 Volume,并且获取到保存在 Volume 里的数据。
StatefulSet 的工作原理
首先,StatefulSet 的控制器直接管理的是 Pod。这是因为,StatefulSet 里的不同 Pod 实例,不再像 ReplicaSet 中那样都是完全一样的,而是有了细微区别的。比如,每个 Pod 的 hostname、名字等都是不同的、携带了编号的。而 StatefulSet 区分这些实例的方式,就是通过在 Pod 的名字里加上事先约定好的编号。
其次,Kubernetes 通过 Headless Service,为这些有编号的 Pod,在 DNS 服务器中生成带有同样编号的 DNS 记录。只要 StatefulSet 能够保证这些 Pod 名字里的编号不变,那么 Service 里类似于 web-0.nginx.default.svc.cluster.local 这样的 DNS 记录也就不会变,而这条记录解析出来的 Pod 的 IP 地址,则会随着后端 Pod 的删除和再创建而自动更新。这当然是 Service 机制本身的能力,不需要 StatefulSet 操心。
最后,StatefulSet 还为每一个 Pod 分配并创建一个同样编号的 PVC。这样,Kubernetes 就可以通过 Persistent Volume 机制为这个 PVC 绑定上对应的 PV,从而保证了每一个 Pod 都拥有一个独立的 Volume。
在这种情况下,即使 Pod 被删除,它所对应的 PVC 和 PV 依然会保留下来。所以当这个 Pod 被重新创建出来之后,Kubernetes 会为它找到同样编号的 PVC,挂载这个 PVC 对应的 Volume,从而获取到以前保存在 Volume 里的数据。
Kubernetes-深入理解 StatefulSet